Desales University
2009 Annual Drinking Water Quality Report

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

In compliance with the requirements of the Safe Drinking Water Act, Desales University is pleased to present to you this year's Annual Consumer Confidence Report. This report is designed to inform you about the quality of water and services we deliver to you every day. Our goal is to provide you with a dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

The water for Desales University and MSC Seminary is provided by a community water system that is owned by the University. We have a 400,000gallon storage reservoir on the mountain near the University with a 400-foot deep well (high well) and another deep well at 434-feet (low well) situated along Station Avenue. The water source for these two wells is an aquifer called the Leithsville Formation. The water that comes from these two wells is chlorinated by Desales University employees prior to being held in the reservoir or directly introduced into the distribution system. During 2009, 21.8 million gallons of water were provided to the University and MSC seminary buildings. The average daily flow was 59,822 gallons.

The water system is registered to Desales University as a public water supply with the I.D. # 3390093 under the name of College Services Corporation.

We have a source water protection plan available from our office that provides more information such as potential sources of contamination.

Desales University is pleased to report that our drinking water meets federal and state requirements and there were NO DEP violations for the reporting year of 2009.

If you have any questions about this report or your water utility, please contact
Marc Albanese, Executive Director of Campus Environment at 610-282-1100 ext. 1213
John M. Miller, Water systems operator at 484-239-2430
Monday-Friday, between the hours of 9:00am – 5:00pm

Desales University routinely monitors for constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2009. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It’s important to remember that the presence of these contaminants does not necessarily pose a health risk.

For more information about contaminants and potential health effects, contact the EPA’s Safe Drinking Water hotline at 1-800-426-4791.

Typical drinking water sources (both tap and bottled water) include rivers, streams, ponds, reservoirs and wells. As water travels over the land’s surface or through the ground, it dissolves naturally occurring minerals and in some cases, radioactive material, and can pick up substances resulting from animals or human activity.
Contaminants that may be present include:

* Microbial Contaminants - such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and livestock.

* Inorganic Contaminants - such as salts and metals which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharge, or farming.

* Pesticides and Herbicides – which comes from agriculture, urban storm water and agricultural uses.

* Organic Chemical Contaminants – (synthetic and volatile), which are by-products of industrial processes, and can come from gas stations, urban storm water runoff, and septic systems.

* Radioactive Contaminant – which can be naturally occurring.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the contaminant is not present at a detectable level.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in $10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in $10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Millirems per year (mrem/yr) - measure of radiation absorbed by the body.

Action Level – (AL) the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The “Maximum Allowed” (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The “Goal” (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

NA- Not applicable

Please call our office if you have questions. 610-282-1100 ext 1251

We at Desales University work around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children’s future.
TEST RESULTS

Disinfectant/Disinfectant By-products

<table>
<thead>
<tr>
<th>Contaminant (unit of measurement)</th>
<th>Violation Y/N</th>
<th>Level Detected</th>
<th>Range</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (ppm)</td>
<td>N</td>
<td>0.75</td>
<td>0.17-1.95</td>
<td>MRDL=4</td>
<td>MRDLG=4</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM-ppb)</td>
<td>N</td>
<td>4.4</td>
<td>0-4.4</td>
<td>N/A</td>
<td>80</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Haloacetic acids (5) (ppb)</td>
<td>N</td>
<td>1.0</td>
<td>0-1.0</td>
<td>N/A</td>
<td>60</td>
<td>By-product of drinking water chlorination</td>
</tr>
</tbody>
</table>

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant (Unit of measurement)</th>
<th>Violation Y/N</th>
<th>Level Detected</th>
<th>Range</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm)</td>
<td>N</td>
<td>0.041</td>
<td>0 of 10 sites above action level</td>
<td>1.3</td>
<td>AL=1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen) (ppm)</td>
<td>N</td>
<td>2.66</td>
<td>0-2.66</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
</tr>
</tbody>
</table>

Footnotes:

(a) Radioactive Contaminants-No readings required in 2009
(b) SOC Contaminants-No tests required in 2009
(c) VOC Contaminants-No contaminants detected in 2009